A HPC Sparse Solver Interface for Scalable Multilevel M ethods

Fang Liut, Masha Sosonkina?, Randall Bramley®
1. Computer Science Department, Indiana University
2. AmesLaboratory, lowa State University

Keywords: component architecture and interfaces; sparse e relaxation (also calledmoothing, executing a few steps
matrix computations of some iterative method on each level.

Abstract o _ _ _

Sparse linear system solvers account for many of the CPU cyRestrictionand prolongation transfer information between
cles in scientific computing simulations. Several HPC solve coarse and fine grids. Multigrid methods usually take a few
packages have been created and distributed to improve e$teps of an iterative method on the fine grid, then transtr th
ficiency. As part of the Common Component Architectureinformation to the coarser grid bigstrictiony after approxi-
(CCA) effort, a Linear Solver Interface (LISI) is being déve Mately solving the coarse grid system of equations, the-info
oped among them. LISI does not supplant HPC solvers, an@ation is transferred back througiolongationand another
the goal is to make it easier for users to switch solvers per apfew steps of relaxation are performed on the finer grid. The
plication (run-time) demands. Some highly efficient scldab different iterative methods can be used on different leoéls
system methods, such as multigrid, multipole, or hieraxahi the mesh hierarchy. This is a typical V-cycle algorithm, e¥hi
O(N) solvers, typically need more information than base LISIMay itself be repeated iteratively if necessary [8].

interface provides. The recursive features of those selkar Multigrid methods are either Geometric Multigrid (GMG)
quire special care when defining software interfaces. Tginou Or Algebraic Multigrid (AMG). GMG is typically used for
subclassing LISI, a medium-level interface is designeafor ~Structured or semistructured meshes, where the geometry of
application to have finer controls over an Algebraic Multgr the problem defines the various multigrid levels. AMG re-
solver. Additionally, an interface is proposed to handle th quires no explicit knowledge of the problem geometry [1] to
geometric information for a Geometric Multigrid solver.iFo determine coarser grids and is useful for unstructured eeesh
more detailed user control, a low-level interface is des@jim ~ Where it is impractical to construct coarser meshes geomet-
an operator based manner. This paper presents design issuiglly. In AMG, intergrid transfer operators and coarsedgr
in the proposed CCA interfaces and a reference implementgquations are based solely on the nonzero structuke 6ft-
tion for several multigrid packages. Test results showtat ~Wware interface design for AMG is more straightforward than

interface overhead is negligible while the usage complexit for GMG. o o _
of the packages is reduced greatly. Analysis of existing multigrid packages shows that a high

level interface support is useful. The interface shouldbhel
. rapid prototyping of multigrid solvers and make applica-
1 Introc_juctlon . NxN . tion usage easier. Choosing a “best” iterative solver for an
Sparse linear systen#s = b, with A< R™ have anim- 55jication’'s nonsymmetric systems of equations is diffi-
portant role in Partial Differential Equations (PDEs) blse ¢ ‘and solver libraries have different strengths andkwea
scientific simulation .and are often the most computatnynall nesses. This makes rapid plug-and-play replacing of a solve
intensive part. Massively parallel computers requireailal 5 ey goal. If the number of lines of code is used as a met-
solvers to fully utilize the available computer power and 10 15 evaluate the software complexity of a package, High
provide higher resolution simulations. Solvers must be 10-performance Preconditioners (HYPRE)'s [1] Semicoarsgnin
bust and have near-optimal computational complexity, withytigrid (SMG) solver for a Poisson equation on structured
enough concurrency to be effectively paralielized. Mullg eghes requires around 217 lines of code. Solving a 3D Pois-
(and more generally, multilevel) techniques have beene@tov g equation using Portable, Extensible Toolkit for Scien-
scalable and optimal, because they can solve some linear sy computation (PETSc)'s Data Management on Multigrid
tem withN unknowns withO(N) or O(Nlog(N)) operations p\MG) [5] interface involves 101 lines, and the AMG
[8, 12], and have overhead costs that @tog(p)), wherep «gmqothed aggregation” [18] solver from Trilinos ML[7] re-
is the number of processes used. .. quires about 183 lines of code. A major advantage of high
A common feature of many variations of multigrid is |eye| interfaces is to ease switching between multigridienp
that they use a hierarchy of spatial discretizations (9ads yentations, and between non-multigrid and multigrid sive
meshes). Grids with fewer nodes are caleexrseand ones 1ha cca [9] is a software component model that specif-
with more nodes are callefihe Multigrid Method (MGM) oy addresses high performance scientific applications
solvers generally have more than two levels in the hierarchyrpeinterface is written in Scientific Interface Definition
The important operations are: Language (SIDL) with a language and platform indepen-
e restriction, defining a related but smaller linear systemdent way, and the earlier work on proposed LISI interface
and mapping a vector onto the corresponding reducefil6, 17] has successfully demonstrated a generic interface
dimensionality space, lisi.SparseSolverand its prototype implementation has been
e prolongation, interpolating or extrapolating values from applied to the fusion application codes Non-ldeal Magneto-
a smaller to a larger linear system, and hydrodynamics with Rotation - Open Discussion (NIMROD)

[4] and M3D [2]. In this paper, a subclass of LISI is designedand physics information. It would be easy to let the appli-

to support more efficient multigrid solvers. cation to construct the hierarchy of grids and other intergr

transformation operators and build the multigrid solveelt.

. In this case the only functionality needed from solver pack-

2 Interface Requirements ages is to smooth the linear system on each grid level and
To identify a suitable and smallest common set of interfacao solve the coarsest grid. Then the application can use any

among widely available multigrid solver packages [1, 13, 5] solver through a LISI [16] interface (Figure 1).
some requirements are investigated first based on them.

MultiLevel Application Solver Library
Setup
21 Ana ySIS of M U|t|gr id Solvers Finest Grid Coefficient Setup ';i:drz"hi‘a Bulld Multilevel solver with
Both AMG and GMG methods have two basic computa- N Gneran ST | | O
tional phasesinitialization anditeration. A hierarchy of in- Generate Prolongation and | aameen
terpolation matrices are generated in the initializatibrage Restriction Operator st | ———
and the iterative phase performs intergrid data transfeds a solve
smoothing. In Section 1, both AMG and GMG follow the
the basic multigrid solver principle differing only in theer

provided information. AMG requires only the linear system Figure 2. Application Builds the Multigrid Hierarchy

to be used, while GMG needs both the linear system and

geometry information such as domain size and shape, dis- The second case has the application building the hierar-
cretized mesh and stencil, etc. The construction (or iig8a chy of grids and related operators and passing these operato
tion) phase builds the hierarchy of grids based on the physicto a multigrid solver building framework. Some approaches
problem, and depending on the coarsening or refinement afs, 3] for designing an operator based interface shows tis a
gorithm used [10] the operators may have vastly differeet pr sumption, while the MGM solver framework is used to fully
sentations. The solving or iterative phase has two layems. O ytilize the internal solver functions (Figure 2). This cdsca

is the outer iteration which specify a V or W cycle that can behappen inside the MGM solver to allow fast prototyping of a
controlled by the MGM solver either in a manner totally hid- MGM algorithm. Our design effort will treat this interface a

den from the application or the application may call dirgctl 3 jow-level interface in which multigrid application has rao
each V or W cycle and control the convergence test. The seGontrols on the solver.

ond layer is the recursive solve within one V or W. This is

done by a MGM solver internally but an interface can be pro- MultiLevel Application J Solver Library

vided to the application. Trilinos ML provides both methods e I e
ML_SolveMGYV only performs one multigrid V cycle itera- Fiest Grid Coeffiient setup| [™" | | Coarsr Grid and Proangation
tion andML _Iterateiterates until convergence to solve the lin- or domain setup e .

ear system. HYPRE’s BoMERAMG only allows control of
the outer loops throughlYPREBoomerAMGSolvenethod.

When an interface is designed, the responsibility for these t
phases is split between the application and solver side.

Figure 3. Application Builds the Finest Grid or Initial Do-
2.2 Interface Boundary mgin ,nformgﬁon

Since the interface sits between the application and solver

packages, the division of work needs to be examed. The two |n, the third case the application only specifies the domain
solving phases for MGM discussed in Section 2.1 providgnformation to allow the GMG solver to construct the coars-
three use cases (Figures 1, 2, 3). Some applications ate budst or finest grid linear system followed by a hierarchy of
grids, or passes the finest grid linear system to an AMG solver
MultiLevel Application Solver Library to construct the coarser linear systems internally (Fid)re

Fmest Grid Cooficent Setup This assumes GMG as a black-box solver where the applica-
tion requires the least effort to use the solvers. Teragdple
timal PDE Solvers — a SciDAC ISIC (TOPS) CCA interface

Coarsening to Generate /, Iterative or Direct Solver

Coarser Grid and Prolongation

Restriction Operater / [6] provides a high level access to geometric and algebraic

multigrid, but it is a bottom up design and implementation
mainly based on PETSc’'s DMMG interface. Our design will

provide an interface specially for GMG and add more param-

eter control for AMG, such that it becomes the medium-level

Figure 1. Application Builds the Multigrid Hierarchy and interface in LISI.

Solver Different interfaces can be designed for all three cases.
Each of them assumes a different level of application irgolv

ground up for one particular purpose, and the applicatiorment. For the first case, itis the easiest to adapt LISI when th

code has the underlying geometric, discretization operatooutside solver is needed. There are two approaches for the

second case demonstrating the successful operator based &5 Separation of AMG and GM G

terface design. Based on our previous research [17], the sub HYPRE’s BoomerAMG solver has methods to set up the

classing from LISI by adding more parameter controls carfinest linear system irHYPREParCSRMatrixformat; the

be designed for the third case, while operator based imerfa maximum number of levels of multigrid; the maximum it-

becomes the next level hierarchy. eration number for total V or W cycles; stopping tolerance;

number of sweeps over the grid on the fine grid and the

. . coarse grid; relaxation method, etc. Trilinos’s ML wraps th

2.3 Matrix or Matrix-free MGM EPETRA matrix into an ML matrix with additional informa-

In Section 2.2, the boundary of interface between applition about the aggregations at each level. Other interfaces
cation and solver shows that both matrix-based and matrixare provided to set up the maximum levels, coarsening type,
free interface invocations could happen in the second casegoarse grid solver, smoothers on each level, etc. Although
while a matrix-based version needs the explicit settindnef t some MGM solver parameters are common among AMG and
multigrid operators (grid hierarchy, prolongation andties ~ GMG solver, for the AMG, most of time when the finest lin-
tion operators) in a sparse matrix format and passed througkar system is given the solver package can build the coarser
the interface. The matrix-free version provides a call backsystems internally. For GMG, the given domain information
function such as applying the given operator to a vectolgrids and stencil) is used to construct the coarse gridifzed
(e.g.matrix-vector produgtprolongation restriction) for the solver package can build the finer linear system internally.
MGM solver to use. PCMG [5] allows a matrix-free opera- Based on discussion in Section 2.4, the required geometric
tor to use their multigrid solver througshell matrix But the information for GMG may need to be set with the matrix, so
third case from Section 2.2 may not be able to process th&MG and GMG interface can only share parameter setting
coarsening internally in a matrix-free fashion for both AMG methods while the matrix and right-hand side setup methods
and GMG solvers, so the medium-level interface need nobave to be different.
support matrix-free MGM, and explicitly passing the matrix

data is required. 3 Designof LISI-MG

Because each MGM package has many application-
2.4 Geometric |nformation for GM G dependent features and the interface and information they u

HYPRE's [1] structured and semi-structured grid interfaced'ﬁer greatly. LInear Solver Interface for Multigrid (LIS

provides a natural way to use GMG solver, only requiring theMG) tnez to abs(,jtract a m|n|mal_comrfnon set. Then subclass-
user to input the grid and stencil information from the plgsi Ing can be used to support unique features or requirements
they have. The interface serves as a common entry point for

problems. In HYPRE the domain is partitioned among the . : :
given processors, and the mesh points are identified with gccess to the different packages, and since the interface ex

global integer index. The domain owned by current proces-endiﬂféol\T eallrller work [ﬁG], the application is able to ace
sor is represented as a box with the start mesh point and e SOIVErs as wetl.
mesh point in a coordinate-wise index. The application must
prepare the values to insert based on coefficient functibns 3.1 Solver Parameters
PDEs. The linear system and right-hand side values are set |n thelisi. SparseSolveinterface, generic solver parameter
through the conceptual interface along with geometricrinfo setup methods allow finer control on the solvers. Although
mation so that an internal data structure is able to do coarse multigrid solver parameters can be included to become part
ing with the given geometric information. HYPRE also pro- of this list of parameters, more specific parameters may have
vides an interface to set boundary values for the problemh, antg be associated with the multigrid levels. At the minimum,
itis also ass_omated with geometric information in the f@m an extra integer parameter is needed in the methods for lev-
a box domain. els in the hierarchy. ThMIGMParameterinterface supports
PETSc's DMMG [5] interface also provides an interface multigrid solver parameter setting. To clarify the boundar
for an application to specify the domain through its DA between multigrid and non-multigrid solvers, tBeneralPa-
object. The domain is specified by the number of meshrameterinterface is extracted from thisi.SparseSolveinter-
points in each domain direction, and only a single grid do-face. As the name suggest®neralParameteis for param-
main is supported. The stencil type\ STENCILSTARand eters associated with general solvers, suchagermethod
DA_STENCILBOX can be chosen, where the former indi- preconditioner maxitsandtol. It supports generic setup rou-
cates only(i, j,k), (i£s,j,k), (i,j £5K), (i, j,kE=s) are in tines and routines with more specific names, suceaspTal
the stencil while the later allow$+s, j+r k+t)tobeinthe setMaxits MGMParametersets up the maximum multigrid
stencil, and the box stencil is supported in PETSc now. level, maximum number of pre/post-smoothing steps on each
This geometric information is based only on a structuredevel, pre/post-smoothing methods on each level, stopping
grid with finite difference discretizations. The questia: r tolerance for each level of smoothing and the solver for the
mains whether an interface need to be provided for moreoarsest level of grid. The AMG and GMG interfaces might
complex geometries. The number of possible discretizatioreither encapsulattGMParameteror inherit from MGM-
schemes is large, so the proposed interface focuses on clfaramter
rently available GMG solver packages with structured grids Some parameter settings may have dependencies forcing a
and finite difference schemes. particular order, e.g., theetMaxLevemust be called before

setPreSmootheBecause theetupMatrixmethod generates
the hierarchy gridssetMaxLevemust precede other solver
related parameters. DefinilgGMParameterequires sepa-
ration into pre/post-parameter group, so LIS| uses inardé

to avoid this and to also avoid extra work on the application

side to handle object construction faliGMParameter

3.2 ClassHierarchy

Section 2.5 shows that except for the parameters, th

S0 twli)_supports only a single structured grid in the rectangle do-

common set between AMG and GMG is small,
separate interfaces are provided in the LISI-MG pac
age. For medium-level interface, theMGSolver expects
the finest linear system input in three-array formalMG-
Solver extends thdisi.SparseSolveinterface (renamed as
lisi.SparseSolverWithMatrxwith all its methods for setting

up right-hand sides and the linear system. The GMG solve

interfaces share th&GMParameterinterface with AMG
solver. AMGSolverand GMGSolverinterfaces are on the

Figure 4 shows the interface hierarchy for LISI-MG. The

GeneralParameterand MGMParameterinterfaces are ex-
tended by the medium layer interfac®8IGSolveandGMG-
Solver and the lower layer interfadewMGMSolverextends
from AMGSolverto handle the operator-based MGM.

W‘

GeneralParameter

YA\ Z}

]
SparseSolverWithMatrix

MGMParameter

|7A T |

GMGSolver

AMGSolver

i

LowMGMSolver

Figured4. Class Hierarchy for LISI-MG Interface

3.3 AMG and GMG Interface
This interface is written in SIDL [14] to make clear that it

is language independent, and the interface is shown in [15]:

As discussed earlier, dGMParametelinterface includes all
the parameter setting routines for general multigrid salve
These parameters are common among HYPRE® BER-
AMG and Trilinos’s ML except fosetPreTolandsetPostTol

mented by CCAComponent and in turn can be exposed to
other components as a CCA service.

A GMGSolverprovides the GMG solver for the single
structured grid. Since there is no uniform way to specify the
complex geometry, some multigrid applications are devel-
oped bottom up without the clear boundary between solver
and application as we discuss in 2.2. Our interface mainly fo
cuses on the simple grid and expects the application to set

p the linear system along with any required geometric in-
ormation, such as grid and stencil. Our proposed interface

main, which is the single common case supported by both
PETSc and HYPRE. The grid information is set throwsgit-

Grid method with the global index of mesh cell, The start
and end nodes in the domain are specified as tuple. The
§tencil is set througlsetStencilwith a array of lengthn in
which n = (#neighbornodes- 1) x dimension In general, a
star-shaped stencil is used with 5 points for 2-D grids or 7
points for the 3-D ones. TheetupMatrixand setupRHSas-

DEs system. The methodpdateMatrixWithBoundargnd
updateRHSWithBoundamre used to update the linear sys-
tem and right-hand side with boundary conditions.

3.4 Low-Level MGM Interface

The low-level MGM interface provides an opeartor-based
interaction between multigrid application and solversdgtier
cussion in Section 2.2. Application sets up all the muldgri
operators such as multilevel linear systems, prolongatiah
restriction operatordowMGMSolverextendsAMGSolverin-
terface and works for both GMG and AMG since the opera-
tors are all algebraic defined. The overloaded methetdp-
Matrix is to set up the multilevel coarser linear systems to
solve. The extra parameter is used to indicaterthatigrid
level Since the linear system is distributed (under block row
partitioning assumption), four more methods need to be-over
loaded: setStartRow setLocalRowssetLocalNNZand set-
GlobalCols These methods require the same extra parameter
multigrid level

Another method is added to handle the recursive calls for
each V cycle, the method is exposed to the application, so
that the application can control the outer loop by using\itg o
convergence test. ThiecurSolvemethod assumes that the hi-
erarchy grids are built during the initialization phase psity
the level number is needed to indicate the current levetesin
L and PCMG are using the different numbering to deter-
ine the level, this interface arbitrarily chooses thatldévis
the finest level, and levail — 1 is the coarsest, where maxi-
mum number of levels i.

There is an auxiliary interfacRlGMOperatoris to be im-

methods. They have been added for completeness and is uggemented by the multigrid application to provigeolonga-

ful for the low-level interface. Th&sMGSolverand AMG-

tion andrestrictionoperators. And it allows solver to callback

Solverinterfaces extend from the high level interfaces andto get the residual array transfered between fine and coarse

are defined as a CCRort which means they can be imple-

grids.

4 | mplernent ation S , GM inertace fo Hypre SMG solver Low-leve itrface or n-House muligd solver

To validate this design, a simple reference implementa- -
tion has been built for both AMG and GMG solvers us-
ing medium- and low-level interfaces. Because the em-
phasis is on the interface usability rather than on the
scientifically-significant results, we take a test examp@eaa
two-dimensional Poisson equation:

N
o

400

w
g
S

=
5
w
<)
=]

=
o
N
IS}
S

Solving time (seconds)
Solving time (seconds)
N
&

3

Uxx + Uyy =f (1) 150
in the unit square domain. For AMG interface tests, the ° e |
boundary condition is defined asx x x sin(y) and f = 0, T NoncCa | S0
and the GMG interface test uses the 0 boundary conditions % 5 0w 1 % 5 10 15
and f = 1. Both AMG and GMG tests use the stopping tol- Heshsizes xadt Heshsizes xaot

erance of 108 in the relative residual and the maximum Figure 6. Test for GMG and Low-level interface
allowed number of iterations is 200. All tests were run on
the Linux clusterodin in the Computer Science Department
at Indiana University. Odin has 128 nodes, each with two,
dual core AMD Opteron 2.0 Ghz processor and 4GB RAM

on each computing node. Medium-level interface tests werg, ot overlapped. Thus, they demonstrate a negligible over-
performed using 16 processes while low-level interfacestes head when using the proposed interface.

were runing on 8 processes, and each result is the AVerage rrilinos ML solver is implemented withMGSolverinter-

of at least ten runs. The components are built with the CCAf ; o

. : : ace. Pre-smoother i3acobiwith three sweeps for all lev-
Tools [39] Version 0.6.0rc5 using a component generatioh 1005, "and aGauss Seidesmoother is used for%ost—smoother
Bocca [11] Version 0.5.0. All the packages and tools are com: ../

! , I with three sweeps on each level. The coarsest solver uses
'FI)'Irliﬁgovglf/r:argigr(]:is?)'.[ﬁlli?{og-\é%RzE version is hypre-2.0.0, andGauss SeidelThe maximum number of levels is 20 KL

. : . modifies this value internally based on the matrix propertie
G,\I;Esstg;/\;ae;[est the medium-level interfa¢eMGSolverand The finest linear system is passed to the solver in COO for-
mat. The linear system is first setupEsetra CrsMatrix, and
then converted tdLMatrix. A ML_Aggregateobject is con-
sgyo Merece [orBoomerANG solver - AMG terface orTrinos WL sover structed within the implementation, and is hidden from &ppl
cation users. Problem sizes are the same as for the HYPRE
BOOMERAMG test cases. The timing results (in Figure 5
right) shows a noticeable overhead only on the largest prob-
lem size of 3200,

To test the GMG interface, HYPRE's SMG structured
grid based geometric multigrid solver was implemented with
LISI-MG with maximum 100 iterations allowed and three
pre- and post-smoothing steps. Figure 6 (left) shows a al-
“o-cca | 10 most linearly increased running time versus the problem siz
—— NonceA (160000, 640000, 2560000, and 10240000). The overhead in-

K troduced is still negligible.
© ks g6 weshsme 0 In order to test the low-level interface, an in-house MGM
(myMGM application is built for the test problem (1). The
application constructs a hierarchical mesh discretinagiod
the associated prolongation and restriction operatoes th

The AMGSolverinterface is implemented for HYPRE's calls the low-level LISI-MG interface to get back the so-
BOOMERAMG solver through HYPRE’s 1J system inter- lution. The lowMGMSolverinterface was implemented by

MG solver directly, while the red line times the results of
calling throughAMGSolverinterface. These two lines are al-

35

@
S

30

N

a
»
S

Time (seconds)
N
S
Solving time (seconds)
w
S

.
@

N

S

.
S}

a

0

Figure5. Test for AMG interface

faces. AHYPREIJMatrix is setting up the multi-level linear system througktupMa-
created with finest linear system in COO format with globaltrix method, and uses the methods frifeMParameterfor
row/column indices. Then it is converted to optional multigrid solver parameters. Using the component

HYPREParCSRMatrixto make it ready for the solver. model, the pre/post-smoothing solver can be easily changed
Similarly right-hand side and solution vectors are setupfor any solver package which complies with the LISI inter-
as HYPREIJVector with global row indices. TheGauss- face. Since the application side generates all the operator
Seidel—Jacobihybrid relaxation is used for both post- and it implementsMGMOperatorinterface to provide callback
pre-smoother with three sweeps on each level. The maximurfunctionality for restriction and prolongation. Solverdsi
number of multigrid levels is 20. The tests are done for theonly needs to use thIGMOperator port. Figure 7 shows
mesh size of 40%) 80(%, 160F, and 3208 (Figure 5 left). The the general architecture for this multigrid solver compune
blue line shows the results of calling HYPRE'SOBMER- Tests for mesh sizes of 67081, 265225, 594441, and

Application Multi~grid solver multigrid solvers. It enables an easy usage of current multi

oo | Setting grid solver packages and leads towards a component based
enerating mulitileve 7 . . A .
e ’EC”'S"'j p— application-solver interaction framework.

linear pre-smoothing|

o parallel conjugate
restriction

dient |
recurSolve gradient sover ReferenCGS

prolongation /,Ormhersowers [1] Hypre: Scalable Linear Solvers : high performanpee-

(" post-smoothinir | conditioners http://www.lInl.gov/CASC/linear\

_solvers/ , April 2008.
Figure7. Test Architecture for Inhouse MGMSolver

system
Constructing restriction |fe— |
and prolongation operatofe |

solve

[2] M3D team. http://w3.pppl.gov/m3d/index.php

2008.
[3] The ML API website. http://trilinos.sandia.
. . . . /pack /ml/mlapi.html April 2008.
1054729 mesh nodes show a running time that increases I|n-4] lg\ll(l)l\\;lFF;%CD.a%tet?)SmZ//I’:?ﬁ?rF())Idten;m.Ofg/ el 2008.
early with increasing mesh size. In Figure 6 (right), Xhaxis [5] PETSc: Portable Extensibel Toolkit for Scientific C om-
is the size of meshes and tiexis is the total running time putation. http://mww-unix.mcs.anl.gov/petsc/

for the whole solution process in seconds. On each level, the petsc-as/ , April 2008.

number of the relaxation steps is set as the square root of[6] Tops Solver Componenhttp://iwww-unix.mcs.anl.
the linear system size to assure that each pre/post-smgothi gov/scidac-tops/solver-components/tops.
solves the system to the specified stopping tolerance. Each__ html_, April 2008. .

run only needs two V cycles to reach the desired accuracy. l’] tTf;_e Trilinos irolleggz)tép.//software.sandla.gov/
The red and blue line show the timing results foyMGM (8] Himos . At :

o . . 8] W. L. Briggs, V. E. Henson, and S. F. McCormick.multigrid
built with and without CCA, respectively. For the small mesh tutorial: second edition Society for Industrial and Applied

size, the overhead is trivial. Mathematics, Philadelphia, PA, USA, 2000.

Besides the lower overhead from using the proposed in- [9] CCA-Forum. The DOE Common Component Architecture
terface, the usage complexity is reduced greatly. In Table 1 project. http://www.cca-forum.org/ , April 2008.
four solvers are compared for their CCA and non-CCA in- [10] E. Chow, R. Falgout, J. Hu, R. Tuminaro, and U. Yang. A sur-
vokation. The columrCCAshows the number of code lines vey of parallelization techniques for multigrid solver®ar-
when calling the solvers via our proposed interface, the col ~ 2llel Processing for Scientific Computing, M.A. Heroux, P.
umn Non-CCA gives the lines of code for direct solver in- Raghavan, and H.D. Simon, eds., SIAM Series on Software,

Environments, and Toql2006.
[11] W. R. Elwasif, Boyana R. Norris, Benjamin A. Allan, and
Robert C. Armstrong. Bocca: a development environment
. . . for HPC components. IProceedings of the 2007 sym-
Table 1. Usage Comparisons (in Code Lines) of Solver posium on Component and framework technology in high-
Packages performance and scientific computingages 21-30, Mon-
treal,Quebec,Canada, October 21 -22 2007.
[12] R. D. Falgout. An introduction to algebraic multigric€Com-

vokation. TheDiff column demonstrates the line reductions
(the larger number means better complexity reduction).

CCA| Non-CCA | Diff % puting in Science and Engineering;24—-33, Nov/Dec 2006.

- — [13] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala. ML
In-House Multigrid Solver| 37 216 82.8 5.0 smoothed aggregation user’s guide. Technical Report
Hypre BoomerAMG| 32 90 64 SAND2006-2649, Sandia National Laboratories, 2006.
Trilinos ML 32 80 60 [14] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Di-
Hypre SMG| 133 243 45 vorcing Language Dependencies from a Scientific Software

Library. In 10th SIAM Conference on Parallel Process-

ing, Portsmouth, VA, March 12-14 2001. LLNL doc-

ument UCRL-JC-140349. See al&itp://www.lInl.

gov/CASC/components/babel.html .

5 Conclusion [15] F. Liu. LISI-MG: CCA interfa_ce for multigrid solvers.
In this paper, a suite of publicly available multigrid pack- http://www.cs.indiana.edu/fangliu/

L : . . lisi-mg.sidl , October 2008.
ages is investigated to abstract common interfaces. This WO [16] F Liy and R. Bramley. CCA-LISI: On Designing a CCA

focuses on multigrid solvers due to their attractive perfor Parallel Sparse Linear Solver Interface. Rmoc. 21th Intl
mance er high-performance computing _(HPC) _S|mU|at|0nS- Parallel & Distributed Processing Symp.(IPDRS)CM/IEEE
Associating the component technology with multigrid sodve Computer Society, Long Beach, CA, 2007. 10 pages.

provides more choices for application users: Not only to[17] M. Sosonkina, F. Liu, and R. Bramley. Usability Levels for
choose a solver from the same package, but also to access Sparse Linear Algebra ComponentSoncurrency and Com-
solvers across different packages. A hierarchical solwer i putation: Practice and Experienc20:1439-1454, 2008.
terfaces corresponding to the levels of control of the appli [18] R- S. Tuminaro and C. Tong. Parallel smoothed aggregation
cation over the multigrid solver. The interfaces are desitn E@:}égr'dlhsgoirggﬁo” i&”f\g%}:jﬁ%“;?g‘é%%’ g%ﬁ'(';' ;’(‘:Z'
for both geometric (GMG) and algebraic (AMG) multigrid pa'gess'5_5 NOVemlbgrSZOOO &
solvers. The design of the former is more complicated, ngainl ’ '

because of non-uniform ways to specify the geometric infor-

mation. We demonstrate that an interface can be designed for

